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Sentiment Lexicons 

 Sentiment lexicon: a list of terms (usually single words) with 

association to positive (negative) sentiment 

 

   

   

   
 

 Applications: 

◦ sentence-, tweet-, message-level sentiment classification 

◦ stance detection 

◦ literary analysis 

◦ detecting personality traits 
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Sentiment Composition 

Sentiment composition: determining sentiment of a phrase (or a 

sentence) from its constituents. 
 

Sentiment composition lexicon (SCL): a list of phrases and their 

constituent words with association to positive (negative) 

sentiment. 

   

  
 

These lexicons are especially useful for studying sentiment 

composition. 
 

Our goal: through manual annotation, create a fine-grained 

sentiment composition lexicon for negators, modals, and degree 

adverbs to study their effect on sentiment. 
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Manually Created Sentiment Lexicons 

 Features: 

◦ more accurate than automatically generated lexicons 

◦ less coverage than automatic lexicons 
 

 Uses (that cannot be fulfilled by automatic lexicons): 

◦ to create automatic lexicons 

◦ to directly evaluate automatic lexicons 

◦ linguistic analysis  

 help understand how sentiment is conveyed by words 

and phrases 

 how sentiment is perceived by native speakers 
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Manually Created Sentiment Lexicons 

 Features 

◦ more accurate than automatically generated lexicons 

◦ less coverage than automatic lexicons 

 Uses (that cannot be fulfilled by automatic lexicons): 

◦ to create automatic lexicons 

◦ to directly evaluate automatic lexicons 

◦ linguistic analysis  

 help understand how modifiers (negators, modal verbs, 

degree adverbs) affect sentiment in phrases 

 how sentiment is perceived by native speakers 
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Existing Manually Created Lexicons 

 most include only single words (lemmas) 

 most have only coarse levels of sentiment (positive vs. 

negative) 
 

Obtaining real-valued sentiment annotations is challenging: 

 higher cognitive load than simply marking positive, negative, 

neutral 

 hard to be consistent across multiple annotations 

 difficult to maintain consistency across annotators 

◦ 0.8 for one annotator may be 0.7 for another 

6 



Method: Comparative Annotations 

Paired Comparisons (Thurstone, 1927; David, 1963): 

If X is the property of interest (positive, useful, etc.),  

give two terms and ask which is more X  

 less cognitive load 

 helps with consistency issues 

 requires a large number of annotations  

◦ order N2, where N is number of terms to be annotated 
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Method: Comparative Annotations 

Paired Comparisons (Thurstone, 1927; David, 1963): 

If X is the property of interest (positive, useful, etc.),  

give two terms and ask which is more X  
 

Best‒Worst Scaling (Louviere & Woodworth, 1990):  
(a.k.a. Maximum Difference Scaling or MaxDiff) 

Give k terms and ask which is most X, and which is least X 
(k is usually 4 or 5) 

 preserves the comparative nature 

 keeps the number of annotations down to about 2N 

 leads to more reliable annotations 

◦ less biased and more discriminating (Cohen, 2003) 
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Our Contributions 

 Create Sentiment Composition Lexicon for Negators, Modals, 

and Degree Adverbs (SCL-NMA): a new fine-grained 

sentiment lexicon manually annotated through crowdsourcing 

and Best‒Worst Scaling 

◦ for phrases and their constituent content words 

 phrases involving negators, modals, and degree adverbs 

 Show that the annotations are reliable 

 Analyze the lexicon to gain new understandings of human 

perception of sentiment 

 Use the lexicon to study how sentiment is composed in 

phrases 
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Creating SCL-NMA 
 

(Sentiment Composition Lexicon for Negators, Modals, and Degree 
Adverbs) 
 

By Manual Annotation and Best‒Worst Scaling 



Term Selection  

 1,621 single words (Osgood’s positive and negative lists) 

 1,586 multi-word phrases in the form ‘modifier w’, where w is 

an Osgood word and modifier is one of the following: 

 a negator (e.g., no, don’t, never) 

 a modal verb (e.g., can, might, should) 

 a degree adverb (e.g., very, fairly) 

 a combination of the above (e.g., would be very) 
 

 In total: 3,207 terms 
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Example Terms 
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Term Sentiment Score  

favor 

would be very easy 

certainly agree 

did not harm 

should be better 

unfavorable 

will not be interested 

was so difficult 

much trouble 

severe 



Annotation 

Crowdsourcing: 

 Manual annotation through crowdsourcing 

 Each question was answered by ten respondents 

 Quality control through a small set of gold answers 

 

Annotation scheme: Best–Worst Scaling  

 The annotator is presented with four terms (a 4-tuple) and 

asked:  

◦ which term is the most positive 

◦ which term is the most negative  
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Example Annotation Instance 
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Best‒Worst Scaling 

 The annotator is presented with four terms (a 4-tuple) 

and asked:  

◦ which term is the most positive 

◦ which term is the most negative  

 

 By answering just these two questions, five out of the 

six inequalities are known 

◦ For example, given the terms A, B, C, and D:  

 if A is most positive and D is most negative,  

 then we know: 

             A > B, A > C, A > D, B > D, C > D 
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Best‒Worst 4-tuples 

We generate 4-tuples such that: 

 no two 4-tuples have the same four terms; 

 no two terms within a 4-tuple are identical; 

 each term in the term list appears in about the same 

number of 4-tuples; 

 each pair of terms appears in about the same number 

of 4-tuples. 
 

This is to maximize the chance that each term is seen in a 

sufficient number, and a diverse set of 4-tuples. 
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Best‒Worst Scaling:  
Converting Responses to Real-Valued Scores 

 Responses converted into real-valued scores for all the terms: 
 

 a simple counting procedure (Orme, 2009): 
 

 

 

The scores range from:  

  -1 (least association with positive sentiment)  

         to   1 (most association with positive sentiment) 
 

 terms can then be ranked by sentiment 
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𝑠𝑐𝑜𝑟𝑒 𝑡 =  
#𝑚𝑜𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡 − #𝑚𝑜𝑠𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑡)

#𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠(𝑡)
 



Example Lexicon Entries 
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Term Sentiment Score  

favor 0.653 

would be very easy 0.431 

certainly agree 0.347 

did not harm 0.194 

should be better 0.069 

unfavorable -0.222 

will not be interested -0.319 

was so difficult -0.514 

much trouble -0.667 

severe -0.833 



Quality of Annotations 

 Annotations are reliable 

◦ re-doing the annotations with different sets of annotators 

produces a very similar order of terms (an average 

Spearman rank correlation of 0.98)  

 Such reliable rankings can be obtained with just two or 

three annotations per BWS question. 

 

 

Svetlana Kiritchenko and Saif M. Mohammad. Capturing Reliable Fine-

Grained Sentiment Associations by Crowdsourcing. NAACL-2016. 
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Interactive Visualization 
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http://www.saifmohammad.com/WebPages/SCL.html#NMA 
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Analyzing Sentiment Composition 
 

Impact of Sentiment Modifiers 

 



Least Perceptible Difference 

 Least perceptible difference aka just-noticeable difference 

◦ a concept from psychophysics  

◦ the amount by which something that can be measured 

(e.g., weight or sound intensity) needs to be changed in 

order for the difference to be noticeable by a human 

(Fechner, 1966)  

 

 With our fine-grained sentiment scores, we can measure the 

least perceptible difference in sentiment 

◦ useful in studying sentiment composition (e.g., to 

determine whether a modifier significantly impacts the 

sentiment of the word it modifies) 
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Measuring the Least Perceptible 
Difference  

 Least perceptible difference in sentiment scores is a point d at 

which we can say with high confidence that the two terms do 

not have the same sentiment associations 
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(d) 
least perceptible difference 

Least Perceptible  

Difference: 
 

SCL-NMA: 0.07 

(on the scale [-1,1]) 



Overall Impact of Sentiment Modifiers 
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On positive words On negative words 

Modifier group Avg. diff # of pairs Avg. diff. # of pairs 

negators -0.93 265 0.79 71 

modals -0.32 258 0.24 72 

degree adverbs 0.20 435 0.17 163 



Impact of Negation on Sentiment 
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The black line shows an average effect of the negators group.  

The red line shows the reversing hypothesis: score(mod w) = –score(w). 



Impact of Negation on Sentiment 

 Most negators 

◦ decrease sentiment of positive words by 0.8-1.0 points 

◦ increase sentiment of negative words by 0.7-0.9 points 

 The greatest shift is caused by will not be and will not 

 The weakest effect is by may not, nothing, and never 

 Verb tense seems not to affect the behavior of negators 

significantly 

 Modals in combination with negators slightly influence the 

behavior of the modifier: 

◦ stronger negators: will not, will not be, and cannot 

◦ weaker negators: could not, would not, and may not 
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Impact of Modal Verbs on Sentiment 
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The black line shows an average effect of the modals group.  

The red line shows the function: score(mod w) = score(w). 



Impact of Modal Verbs on Sentiment 

 Most modal verbs 

◦ decrease sentiment of positive words by 0.2-0.4 points 

◦ increase sentiment of negative words by 0.2-0.3 points 

 The greatest shift (about 0.4 points) is observed for words 

with high absolute sentiment values 

 The most influential modal modifier is would have been 

 Consistent and relatively strong modifiers are formed by 

modals could and might 

 Smallest effect on sentiment is caused by can, can be, would, 

and would be 
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Impact of Degree Adverbs on Sentiment 

 Many degree adverbs have a small and rather inconsistent 

effect on sentiment 

 The only degree adverb that affects sentiment to a large 

extent (0.835 points) is less 

◦ acts as negator 

 Modifiers that consistently reduce the intensity of positive 

words are was too, too, probably, fairly, and relatively 

 One modifier, highly, consistently and significantly increases 

the sentiment of positive words 

 The sentiment of negative words is noticeably lowered by 

modifiers extremely and very very 
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Conclusions 

 Created a sentiment composition lexicon for English phrases 

involving common sentiment modifiers 

◦ manual annotation with Best-Worst Scaling 

◦ real-valued sentiment associations 

 Showed that the annotations are reliable 
 

 Analyzed the impact of negators, modals, and degree 

adverbs on sentiment: 

◦ these modifiers affect sentiment in complex ways so that 

their effect cannot be easily modeled with simple heuristics;  

◦ the effect of a modifier is often determined not only by the 

type of the modifier but also by the modifier word and the 

content word themselves. 
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Our Related Projects 

 Sentiment Composition Lexicon for Opposing Polarity 

Phrases (SCL-OPP) 
 

Svetlana Kiritchenko and Saif M. Mohammad. Sentiment Composition of 

Words with Opposing Polarities. NAACL-2016. 

 

 Semeval-2016 Task #7 ‘Determining Sentiment Intensity of 

English and Arabic Phrases’ 

◦ General English Sentiment Modifiers Set (SCL-NMA) 

◦ English Twitter Mixed Polarity Set (SCL-OPP) 

◦ Arabic Twitter Set 
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Lexicons Availability 

All lexicons and their interactive visualizations are available at: 

http://www.saifmohammad.com/WebPages/SCL.html 
 

Code for Best‒Worst Scaling will be available at: 

http://www.saifmohammad.com/WebPages/BestWorst.html  
 

 

 

SemEval-2016 Task 7: http://alt.qcri.org/semeval2016/task7/ 
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