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Word-Sentiment Associations

» Adjectives
o reliable and stunning are typically associated with positive
sentiment

o rude and broken are typically associated with negative
sentiment

« Nouns and verbs

o holiday and smiling are typically associated with positive
sentiment

o death and crying are typically associated with negative
sentiment
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Sentiment Lexicons

« Sentiment lexicon: a list of terms (usually single words) with
association to positive (negative) sentiment

happy 0.9
awful -0.9
award 0.6

» Applications:
° sentence-, tweet-, message-level sentiment classification
o stance detection
o literary analysis
o detecting personality traits
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Sentiment Composition

Sentiment composition: determining sentiment of a phrase (or a
sentence) from its constituents.

Sentiment composition lexicon: a list of phrases and their
constituent words with association to positive (negative)
sentiment.

bad luck  -0.75
had 0.41

luck 0.58

These lexicons are especially useful for studying sentiment
composition.
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Task: Determining Sentiment Intensity of
English and Arabic Phrases

Task Description:

e Input: a list of terms
o single words
o multiword phrases

» Output: score indicative of the term’s strength of association
with positive sentiment

° a more positive term should have a higher score than a
less positive term.

Motivation:

« Intrinsic evaluation of automatically created sentiment
lexicons for:

> single words
o phrases (sentiment composition)
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Task: Example

certainly agree favor 0.83
did not harm would be very easy 0.72
favor certainly agree 0.67
much trouble - did not harm 0.60
severe should be better 0.54
should be better was so difficult 0.24
was so difficult much trouble 0.17
would be very easy severe 0.08
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Existing Manually Created Data

e most include only single words (lemmas)

* most have only coarse levels of sentiment (positive vs.
negative)

» no fine-grained sentiment lexicons for phrases, other
languages

» higher cognitive load than simply marking positive, negative,
neutral

» hard to be consistent across multiple annotations
« difficult to maintain consistency across annotators
> 0.8 for one annotator may be 0.7 for another
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Annotation Method

Best—Worst Scaling (Louviere & Woodworth, 1990):
(a.k.a. Maximum Difference Scaling or MaxDiff)

If X is the property of interest (positive, useful, etc.),
give k terms (usually 4 or 5) and ask

which is most X, and which is least X | _ a i
« comparative in nature 58 ﬂ

e helps with consistency issues

Crowdsourcing:
» Each 4-tuple is annotated by at least eight respondents
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Best-Worst Scaling:
Converting Responses to Real-Valued Scores

» Responses converted into real-valued scores for all the terms:

a simple counting procedure (Orme, 2009):

#most positive(t) — #most negative(t)

score(t) =
© #annotations(t)

The scores range from:
-1 (least association with positive sentiment)
to 1 (most association with positive sentiment)

terms can then be ranked by sentiment
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Data

Three subtasks/domains:

e General English Sentiment Modifiers:

> 2,999 single words and phrases with negators, modals,
and degree adverbs (e.g., delightful, rather dangerous,
may not know)

e English Twitter Mixed Polarity:

> 1,269 single words and phrases with at least one positive
and at least one negative word (e.g., lazy sundays, best
winter break, happy accident)

e Arabic Twitter:

- 1,366 single words and simple negated phrases (e.g., <\,
Gde #, Giain (i, pllllas)
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Quality of Annotations

e Annotations are reliable

> re-doing the annotations with different sets of annotators
produces a very similar order of terms (an average
Spearman rank correlation of 0.98)

Svetlana Kiritchenko and Saif M. Mohammad. Capturing Reliable Fine-
Grained Sentiment Associations by Crowdsourcing. NAACL-2016.
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Interactive Visualization for General

English Sentiment Modifiers (SCL-NMA)

Sentiment of a word vs. Sentiment of phrases consisting that word
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Interactive Visualization for English Twitter
Mixed Polarity (SCL-OPP)

Sentiment intensities of the phrases in SCL-OPP

Each phrase 1s formed by content words W1 and W2 {and possibly a functon word)
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Previous Edition of the Task
SemEval-2015 Task 10 Subtask E

e Domain:

(e]

high-frequency terms from English tweets

e Phrase length:

(o]

single words (e.g., fake)

> two-word negated phrases (e.g., can’t wail)
e Term categories:

(¢]

(e]

(¢]

(¢]

(¢]

reqular English words (e.g., happy)

hashtagged words (e.g., #loveumom)

misspelled or creatively spelled words (e.g., happeeee)
abbreviations (e.g., Imao)

slang (e.g., smexy)

emoticons (e.g., <33)

etc.
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Evaluation

Data distribution: for each subtask,

e no training data;

» development set: 200 terms with scores;
e unseen test set with no scores.

Evaluation measures:
» Kendall’s rank correlation (primary)
» Spearman’s rank correlation (secondary)
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Participants

5 teams, 3 submissions per subtask

« ECNU: East China Normal University, China

e iLab-Edinburgh: Heriot-Watt University, UK

o LSIS: Aix-Marseille University, France

» NileTMRG: Nile University, Egypt

« UWAB: University of West Bohemia, Czech Republic
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Participated Systems

e Supervised vs. unsupervised:

c most systems trained regression models on dev. set and
available sentiment lexicons and corpora,

> the winning team ECNU treated the task as rank prediction;

> one system LSIS was unsupervised leveraging information
from sentiment lexicons, corpora, and Google search.

e Features:
o Information from sentiment lexicons,
- general and sentiment-specific word embeddings,

o pointwise mutual information (PMI) between terms and
sentiment classes in labeled corpora,

o lists of negators, intensifiers, and diminishers.
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Results

» Results on the General English Sentiment Modifiers set are
markedly higher than the results on the other datasets.

» Results on the Arabic Twitter test set are substantially lower
than the results on the similar English Twitter data used in the

2015 competition.

» Results on single words are noticeably higher than the
corresponding results on multi-word phrases:

o especially apparent on the Arabic Twitter data.
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Conclusions

» Strong correlations between predicted and gold rankings:
- for general English domain,

o for single words in the other two domains.

» Correlations are markedly weaker:

o for multi-word phrases in the English Mixed Polarity set,
o for Arabic Twitter set.

We hope that the availability of these datasets will foster further

research towards automatic methods for sentiment composition
In English and other languages.

Task website:
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