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Abstract

In this paper, we propose a regression system
to infer the emotion intensity of a tweet. We
develop a multi-aspect feature learning mech-
anism to capture the most discriminative se-
mantic features of a tweet as well as the emo-
tion information conveyed by each word in it.
We combine six types of feature groups: (1) a
tweet representation learned by an LSTM deep
neural network on the training data, (2) a tweet
representation learned by an LSTM network
on a large corpus of tweets that contain emo-
tion words (a distant supervision corpus), (3)
word embeddings trained on the distant super-
vision corpus and averaged over all words in a
tweet, (4) word and character n-grams, (5) fea-
tures derived from various sentiment and emo-
tion lexicons, and (6) other hand-crafted fea-
tures. As part of the word embedding train-
ing, we also learn the distributed representa-
tions of multi-word expressions (MWEs) and
negated forms of words. An SVR regressor is
then trained over the full set of features. We
evaluate the effectiveness of our ensemble fea-
ture sets on the SemEval-2018 Task 1 datasets
and achieve a Pearson correlation of 72% on
the task of tweet emotion intensity prediction.

1 Introduction

The widespread use of micro-blogging and social
networking websites such as Twitter for convey-
ing information, sharing opinions, and expressing
feelings, makes the sentiment analysis of tweets
an attractive area of research. However, senti-
ment analysis is challenging because people often
convey their emotions indirectly and creatively,
rather than explicitly stating how they feel. Sen-
timent analysis of tweets is additionally challeng-
ing because of the frequent occurrences of non-
standard language and poor grammatical structure.
Tweets also often contain misspellings, abbrevia-
tions, hashtags, and emoticons.

Various machine learning approaches have been
developed for Twitter sentiment classification.
Most of these algorithms train a classifier over
tweets with manually annotated sentiment inten-
sity labels and learn the most discriminative fea-
tures. Hence, designing an effective feature engi-
neering algorithm can improve classification per-
formance, greatly. Mohammad et al. (2013; 2014)
used many different sentiment lexicons (manually
created and automatically generated), as well as a
variety of hand-crafted features to build the top-
ranked system for Twitter sentiment classification
tasks in SemEval-2013 and SemEval-2014. Sen-
timent lexicons, either hand-crafted or algorith-
mically generated, consist of words and their as-
sociated polarity scores. However, since feature
engineering is labour intensive and usually needs
domain-specific knowledge, sentiment classifica-
tion algorithms with less dependency on feature
engineering are attracting considerable interest.

Socher et al. (2013) proposed a feature learning
algorithm to discover explanatory factors in sen-
timent classification. They consider the represen-
tation of a sentence (or document) as a composi-
tion of the representations of its constituent words
or phrases. This way, the sentiment classifica-
tion problem reduces to learning an effective word
representation (or word embedding) that not only
models the syntactic context of words but also
captures sentiment information of the sentence.
Tang et al. (2014) extended the traditional word
embedding methods (Mikolov et al., 2013b; Col-
lobert et al., 2011) by encoding sentiment informa-
tion into the existing continuous representation of
words. They built sentiment-specific word embed-
ding (SSWE) by developing three neural networks
wherein the sentiment polarity of the tweet is in-
corporated in the neural networks’ loss functions.
Teng et al. (2016) proposed a context-sensitive
lexicon-based method using recurrent and simple



Emotion Train Dev. Test Total
anger 1,701 388 1,002 3,091
fear 2,252 389 986 3,627
joy 1,616 290 1,105 3,011
sadness 1,533 397 975 2,905
Total 7,102 1,464 4,068 12,634

Table 1: Number of instances provided in the Tweet
Emotion Intensity dataset (SemEval-2018 Task 1, EI-
reg English). The data was divided into train, develop-
ment, and test sets.

feed-forward neural networks to extract sentiment
lexicons and produce a new polarity weight, re-
spectively.

Unlike lexicon-based sentiment analysis, deep
learning approaches are effective in exploring both
linguistic and semantic relations between words
(Liu et al., 2015). However, due to the limited
amount of high-quality labeled data, it is difficult
to train deep models with a large number of hyper-
parameters for sentiment analysis tasks. Addition-
ally, manual labeling of data is costly and requires
domain expert knowledge, which is not always
available.

In this paper, we describe two systems: Sys-
tem I, our official submission to the competition,
and System II, our best model. In both systems,
we combine deep learning and lexicon-based ap-
proaches to extract the most informative semantic
and emotion representations of tweets. We train
two LSTM models, one on the provided training
data and another one on a large corpus of tweets
that contain emotion words, to obtain emotion-
specific tweet representations. We augment this
feature space with word and character n-grams,
features derived from several sentiment and emo-
tion lexicons as well as other hand-crafted fea-
tures. Our best model achieves an average Pear-
son correlation of 71.96% on the official EI-reg
test dataset.

2 Data

The English training, development, and test
datasets used in our experiments were provided as
part of the SemEval-2018 Task 1, EI-reg subtask
(Mohammad et al., 2018).1 The data files include
tweet id, tweet text, emotion of the tweet, and the
emotion intensity. An overview of the data is pro-
vided in Table 1.

1A detailed description of the English datasets and the
analysis of various affect dimensions is available in Moham-
mad and Kiritchenko (2018).

2.1 Data preparation

The following pre-processing steps were applied
to each of the training and test tweets:

• Remove URLs and usernames.

• Lower-case all the tweet text.

• Substitute abbreviated phrases such as I’ve,
don’t, I’d, etc. with their long forms.

• Replace tweet-specific acronyms such as gr8,
lol, rotfl, etc. with their expanded forms.

• Substitute the elongated words with the same
words but keeping at most two consecutive
occurrences of repeated letters.

• Standardize all the emojis in data to their ex-
planatory phrases using emoji Python pack-
age2.

• Remove all the HTML character codes.

• Replace all occurrences of a multi-word
expression (MWE) by a unique identifier.
We use WikiMWE (Hartmann et al., 2012),
which contains all multi-word expressions
from Wikipedia.

• Generate the negated form of all the tokens
that occur between any of the negation words,
such as no, not, never, etc., and a punctuation
mark.

• Remove special characters, numbers, non-
English words or phrases.

• Normalize all adjectives and adverbs in test
data that do not exist in train or develop-
ment data sets with adjective or adverb in the
training data which shares the most common
Synsets of WordNet with it (if we find more
than one candidate, we replace the adjective
with the most frequent one in the training
data).

• Applying WordNet lemmatizer to have the
simple singular form of tokens with part-
of-speech tags of adjective, adverb, verb or
noun.

The tweets are now fed to the system.

2https://pypi.org/project/emoji/



3 System Description

We created two models: System I, our official sub-
mission to the competition, and System II, our best
model. Both models address the task of emotion
intensity prediction (EI-reg): given a tweet T and
an emotion e, predict a real-valued intensity score
(in the range [0, 1]) of e that represents the emo-
tional state of the author of the tweet T.

3.1 System I

Our first model takes advantage of both
embedding-based and lexicon-based features.
In particular, the following feature sets are
generated:

• Embedding-based features:

– Average word embedding vector;
– Representation of a tweet learned by an

LSTM neural network on the provided
training data;

• Lexicon-based and n-gram features:

– Word and character n-gram features;
– Vector of 43 lexicon-derived features,

compiled using the AffectiveTweets
package (Mohammad and Bravo-
Marquez, 2017).3 The lexicons used
include those created by Nielsen
(2011); Mohammad and Turney (2013);
Kiritchenko et al. (2014); Hu and Liu
(2004); Bravo-Marquez et al. (2016);
Thelwall et al. (2012); Wilson et al.
(2005).

We use bag-of-word (BOW) (Pang et al., 2002)
and term frequency-inverse document frequency
(tf-idf) methods to extract different word and char-
acter n-grams. We train word embeddings on a
large corpus of tweets that contain emotion words.
Then, we refine our learned word embeddings to
build emotion-specific word embeddings for ev-
ery emotion. Specifically, we assign emotion-
specific weights to every word in our learned word
embeddings and multiply each word vector by
weights. These emotion-specific weights are ob-
tained by calculating the Pearson correlation be-
tween the extracted unigram features and intensity
labels of the training and development datasets of
each emotion.

3https://affectivetweets.cms.waikato.ac.nz/

We concatenate two learned embedding-based
tweet representations, word and character n-
grams, and the lexicon features in a multimodal
feature layer. We train a Random Forest (RF)
over this heterogeneous multimodal feature layer
to predict emotion intensity of a tweet.

This approach was evaluated on the datasets of
SemEval-2018 Task 1, EI-reg (an emotion inten-
sity regression task) and EI-oc (an emotion inten-
sity ordinal classification task), for which it ob-
tained Pearson correlations of 57.5% and 48.5%
on the test sets, respectively.

Further investigation revealed that our system
I was overfitted to the training data and lost its
generalization ability over new unseen data. The
cause of this problem was the use of development
dataset labels in our feature engineering algorithm.
So, we modify our model to overcome overfitting
and propose system II.

3.2 System II
Similarly to System I, our second model incor-
porates both embedding-based representations and
linguistic knowledge in a unified architecture (see
Figure 1). We train a Support Vector Regressor
(SVR) over the following two categories of fea-
tures:

• Embedding-based features:

– Average word embedding vector;
– Representation of a tweet learned by an

LSTM neural network on the provided
training data;

– Emotion-polarized representation of a
tweet learned by an LSTM neural net-
work on a distant supervision corpus;

• Lexicon-based and hand-crafted features:

– Word and character n-gram features;
– Vector of 43 lexicon-derived features,

compiled using the AffectiveTweets
package (Mohammad and Bravo-
Marquez, 2017);

– Hand-crafted features based on either
word similarities in learned word em-
beddings or emotion intensity similari-
ties in accordance to train and develop-
ment labels.

Below, different components of the two systems
are explained in detail.
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Figure 1: The architecture of our model (System II).

3.3 Word embedding layer

Since the input of our model is a sequence of
tokens {w1, w2, ..., wn}, it is crucial to learn an
effective word representation for automatic emo-
tion analysis. A word embedding is a dense,
low-dimensional and real-valued vector associ-
ated with each word wi. We used word2vec
(Mikolov et al., 2013a) and SVD-NS (Soleimani
and Matwin, 2018) to learn word embeddings and
trained it on an unlabeled corpus of 21M tweets
provided as part of the SemEval-2018 Affect in
Tweets DIstant Supervision Corpus (SemEval-
2018 AIT DISC) (Mohammad et al., 2018). SVD-
NS works better for word and sentence similarity
tasks and is much faster than word2vec. Such dis-
tributed word representations learned from mas-
sive text data make feature engineering less depen-
dent on the task. However, unsupervised learn-
ing of word embeddings cannot thoroughly cap-
ture finer context-based semantic information of
a specific task. Hence, to incorporate linguistic
structure of tweets, we use the following two tech-
niques to improve the word vectors:

1. Our model learns a unique distributed rep-
resentation for every Multi-Word Expression
(MWE). MWEs occur frequently in tweets,
and their meanings are often not derivable
from the meanings of the constituent words.

2. Additionally, our model learns an embedding
vector to represent the negated form of ev-
ery word occurring between a negation word
(e.g., no, shouldn’t) and the following punc-

tuation mark. Due to the significant im-
pact of negation words in changing the sen-
timent polarity of a sentence, we treat the
negated tokens differently (Zhu et al., 2014;
Kiritchenko et al., 2014). By adding a ‘NEG’
prefix to them, we consider the negated to-
kens as different entities and learn separate
word representations for them.

To learn word embeddings, we applied two
methods: the continuous skip-gram model
(Mikolov et al., 2013a) with the window size of 5,
and SVD-NS (Soleimani and Matwin, 2018) with
the PMI threshold of α = −2.5. The vector di-
mensionality was set to d = 100. We also filter
words that occur less than 3 times in the corpus.

3.4 Average embedding layer

To capture the global context of a tweet, we build a
tweet embedding by vertically concatenating em-
bedding vectors of its n words. This yields a tweet
embedding matrix X ∈ Rn×d. Then, we take
the mean of these word embeddings across the
tweet length. Therefore, an average embedding
will add d features (equal to the number of our
word embedding dimensions) to our multimodal
feature layer.

3.5 Tweet embedding vector learned by
LSTM layer

To learn a semantic representation of a tweet, we
use an LSTM neural network, which we found
effective in detecting salient words of a sen-
tence while automatically attenuating unimportant



words. The LSTM model sequentially takes each
word in a sentence, extracts its information, and
embeds it into a semantic vector. Due to its abil-
ity to capture long-term memory, LSTM accu-
mulates increasingly richer information as it goes
through the sentence, and when it reaches the last
word, the hidden layer of the network provides
a semantic representation of the whole sentence
(Palangi et al., 2016). To be able to train se-
quential neural networks in batches, we normal-
ize tweet length by zero padding and then feed the
zero-padded tweet embedding matrix to an LSTM
layer. We apply dropout (Srivastava et al., 2014)
on the LSTM layer to prevent network parame-
ters from overfitting and control the co-adaptation
of features. Our LSTM layer is then followed by
two fully connected hidden layers, and one output
layer. Each of these layers computes the transfor-
mation f(Wi ∗ xi + bi) for i = {1, 2, 3}, where W
is the weight matrix, b is the bias vector and f is a
Relu non-linear activation function for hidden lay-
ers and a Sigmoid neuron for output layer. The full
network is trained on the provided training data to
predict the intensity score of the input tweet. We
consider the representation obtained from the first
hidden layer as a sentence embedding vector of an
input tweet.

The network parameters are learned by mini-
mizing the mean squared error (MSE) between
the actual and predicted values of emotion inten-
sity on the training data. We optimize this loss
function by back-propagating through layers via
mini-batch gradient descent, with batch size of 32,
40 training epochs, and Adam optimization algo-
rithm (Kingma and Ba, 2014) with learning rate of
α = 0.001. We use one LSTM layer with 64 neu-
rons, followed by a dropout of 0.2, and two hid-
den layers of sizes 32 and 16, respectively. We use
the same network parameters for an LSTM model
trained on the distant supervision data (see Sec-
tion 3.6).

3.6 Emotion-polarized tweet representation
learned by LSTM

We leverage large amount of Twitter data with dis-
tant supervision to polarize our word embeddings
for each emotion. Hence, we use SemEval-2018
AIT DISC distant supervision corpus of tweets
released by the competition organizers, which
includes around 100M English tweet ids asso-
ciated with tweets that contain emotion-related

query terms such as ‘#angry’, ‘annoyed’, ‘panic’,
‘happy’, etc. We collected 21M tweets by polling
the Twitter API with these tweet ids. Based
on the query terms, one or more emotion la-
bels of {‘anger’, ‘fear’, ‘joy’, ‘sadness’} have
been assigned to every tweet in this dataset.
For each emotion, we randomly select 200, 000
tweets labeled with that emotion (e.g., ‘anger’)
and 200, 000 tweets labeled with other emotions
(‘not anger’) to build the emotion-specific word
embeddings. Since the four basic emotions are
not independent and may be correlated, we build
these emotion-polarized word embeddings in two
ways: (i) one against all strategy: for example,
‘not anger’ tweets are selected from tweets la-
beled with any of the other three emotions, i.e.,
‘fear’, ‘joy’, or ‘sadness’; (ii) considering emo-
tions with similar valence as one group of labels:
tweets labeled with ‘anger’, ‘fear’, and ‘sadness’
are treated as they have the same label. So, here
‘not anger’ tweets are selected from tweets that
are labeled only as ‘joy’. Then, we train an LSTM
neural network using these emotion-specific word
embeddings to build emotion-specific representa-
tions of tweets. Our final emotion-specific tweet
representation obtained by concatenating two hid-
den state layers learned by the same LSTM neural
network trained twice on the same data but with
different emotion labeling according to the above
two labeling strategies.

3.7 Hand-Crafted Features

In addition to the two kinds of tweet representa-
tions described above, we use bag-of-word (BOW)
representation to extract most and least frequent
word n-grams (unigrams, bigrams, and trigrams)
as well as character n-grams (three, four, and five
consecutive characters) from the training, devel-
opment, and test datasets. BOW represents each
word as a one-hot vector which has the same
length as the size of the vocabulary, and only one
dimension is 1, with all others being 0. How-
ever, the one-hot word representation cannot suffi-
ciently capture the complex linguistic characteris-
tics of words. We augment our feature space by
generating additional hand-crafted features. We
define a set of binary features by adding n adjec-
tives with highest and lowest intensities for each
emotion according to the emotion’s training data.
The intensity of a word (unigram) is obtained as an
average emotion intensity of tweets in the train-



Experiment Anger Fear Joy Sadness Average
System I (EI-reg) WE + TE + lex 58.15 57.06 57.51 57.36 57.54
System I (EI-oc) WE + TE + lex 49.07 41.09 55.62 48.45 48.56

System II (EI-reg)

WE 62.37 60.07 56.46 60.69 60.12
WE + MWEs 63.26 61.55 57.91 61.89 61.15
WE + MWEs + negation 62.80 62.66 58.21 63.32 61.75
ngram 48.30 52.65 52.44 52.01 51.35
polTE 30.12 36.81 33.95 48.86 37.44
TE 68.91 68.93 69.21 70.14 69.30
WE + lex 67.74 68.74 66.20 67.21 67.48
WE + ngram 63.70 66.38 60.87 64.55 63.87
WE + ngram + lex 66.99 70.27 67.46 67.67 68.10
WE + lex + handcrafted 68.82 71.63 67.74 69.27 69.37
WE + ngram + TE 69.69 69.54 68.49 69.66 69.35
WE + ngram + TE + lex 69.98 73.44 69.14 73.33 71.47
all features 72.30 70.46 71.55 73.13 71.96

Table 2: Pearson correlation (r) % obtained on the test sets. The highest score in each emotion is shown in bold.
System I indicates the results of our first overfitted model and System II shows the results of our modified model.
In every experiment on system II, we train SVR regressor with linear kernel to predict emotion intensity of a
tweet while in system I experiments, we use RF regressor and SVM classifier for SemEval-2018 Task 1 and 2,
respectively. The all-features experiment represents the model built on concatenation of all six groups of features
including WE, ngram, TE, polTE, lex, and handcrft.

ing data that contain that unigram. We also add
the weighted average intensity of all extracted un-
igrams and the intensity of their k nearest neigh-
bors in learned word embeddings (sorted based on
cosine similarity) to our feature set.

4 Results

We train the SVR regressor on the combined set
of tweets in the training and development sets and
apply the model on the test set. The Pearson cor-
relation between the predictions and the gold la-
bels was used by the competition organizers as
the official evaluation measure. The percentage
of Pearson correlation scores obtained by all of
our individual and combined models on the test
set are shown in Table 2. To make the result ta-
ble easier to understand, we shortened the fea-
ture groups’ names as follows: 1) average word
embedding vectors → WE, 2) tweet embedding
vectors learned by LSTM → TE, 3) emotion-
polarized tweet embeddings learned by LSTM→
polTE, 4) word and character n-gram features →
ngram, 5) AffectiveTweets lexicon features→ lex,
6) hand-crafted features based on word similar-
ities in emotion intensity → handcrft. All the
results reported in the table use word embed-
dings that are obtained by SVD-NS (Soleimani
and Matwin, 2018) method which was slightly
better than word2vec (Mikolov et al., 2013b).

The ‘all-features’ row shows the results ob-
tained by the model that concatenates all six
groups of features including WE, ngram, TE,

polTE, lex, and handcrft. This model achieves
the highest Pearson correlation score among all
of our proposed models. The tweet representation
learned by LSTM is the best learned unimodal fea-
ture. Considering MWEs as independent seman-
tic units improves the average embedding model’s
performance by 1.03 percentage points. Learning
independent embedding vectors for negated form
of words further improves the score by 0.6 per-
centage points.

5 Conclusion

We described a deep learning framework to predict
emotion intensity in tweets. We implemented an
ensemble of embedding-based feature representa-
tions and sentiment lexicon-based feature learning
approaches. Our best model obtained a Pearson
correlation of 71.96% on Task 1 of SemEval-2018
competition (EI-reg: an emotion intensity regres-
sion task). The tweet representation feature vec-
tor learned by LSTM was the most effective fea-
ture group amongst those that we used. Various
sentiment and emotion lexicon features, our hand-
crafted features and word n-grams features also
helped improve prediction quality.
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