

Felipe Bravo-Marquez University of Waikato

Postdoctoral research fellow in the Machine Learning Group at the University of Waikato.

Acknowledgments: We thank Svetlana Kiritchenko for helpful discussions. We thank Samuel Larkin for helping with data collection.

Emotions

Dimensional Model of Emotions

- small number of dimensions
- emotion is point in the multi-dimensional space

Circumplex Model (Russell, 1980)

Categorical Model of Emotions

• a handful of basic emotions

Ekman (1971): 6 basic emotions, Plutchik (1980): 8 basic emotions

• anger	not angry at all	extremely angry
		Intensity of Anger
• joy	not happy at all	extremely happy
		Intensity of Joy
•		

We use language to communicate not only the category of of the emotion but also the intensity.

Here, intensity refers to the degree or amount of an emotion such as anger, sadness, or joy.

7

Why model emotion intensity?

- Natural language applications benefit from knowing both the class of emotion and its intensity
- Commercial customer satisfaction system
 - significant frustration or anger vs. instances of minor inconvenience

However, most work on automatic emotion detection has focused on categorical classification:

- built models for presence of anger, joy, sadness, etc.
- lack of data annotated for intensity

Challenges in Annotating Emotion Intensity

- Respondents are presented with greater cognitive load
- Particularly hard to ensure consistency
 - both across responses by different annotators, and
 - within the responses produced by an individual annotator

WAIKATO

We present work on detecting and analyzing fine-grained emotion intensities from tweets.

- manually
- automatically

Emotion Intensity Task

Given:

0

- a tweet
- an emotion X (anger, fear, joy, or sadness)

Task: determine the intensity or degree of emotion X felt by the speaker—a real-valued score between 0 and 1.

- A score of 1 means that the speaker feels the highest amount of emotion X.
- A score of 0 means that the speaker feels the lowest amount of emotion X.

(There are other ways in which the intensity task can be framed.)

DATA

0

- compiling tweets
- annotating for emotion intensity
- analysis

Query Terms

For each emotion X,

- we select 50 to 100 related terms from the Roget's Thesaurus
 - associated with that emotion at different intensity levels
 - for anger: *angry, mad, frustrated, annoyed, peeved, irritated, miffed, fury, antagonism,* and so on.
 - for sadness: *sad, devastated, sullen, down, crying, dejected, heartbroken, grief, weeping,* and so on.

Tweets

- Polled the Twitter API for tweets that included the query terms.
 - discarded retweets and tweets with urls
- Created a subset of the remaining tweets by:
 - selected at most 50 tweets per query term
 - selected at most 1 tweet for every tweeter-query term combination

Hashtags in Tweets

- To study the impact of emotion word hashtags on the intensity of the tweet
 - identified tweets that had a query term in hashtag form towards the end of the tweet

This mindless support of a demagogue needs to stop. #racism #angry Hashtag Query Term Tweet (HQT Tweet)

 created copies of these tweets and then removed the hashtag query terms from the copies

This mindless support of a demagogue needs to stop. #racism No Query Term Tweet (NQT Tweet)

Master Tweets Set

Includes 7,097 tweets:

- 1030 Hashtag Query Term Tweets (HQT Tweets)
- 1030 No Query Term Tweets (NQT Tweets)
- 5037 remaining tweets

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

How to capture fine-grained affect intensity associations reliably?

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

How to capture fine-grained affect intensity associations reliably?

0

Ranking Jelly Bean Flavours

- Black Pepper
- Booger
- Dirt
- Earthworm
- Earwax
- Rotten Egg
- Sausage
- Soap

• ...

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

How to capture fine-grained affect intensity associations reliably?

THE UNIVERSITY OF

Comparative Annotations

Paired Comparisons (Thurstone, 1927; David, 1963): If X is the property of interest (positive, useful, etc.), give two terms and ask which is more X

- less cognitive load
- helps with consistency issues
- requires a large number of annotations
 - order N², where N is number of terms to be annotated

Comparative Annotations

Best–Worst Scaling (Louviere & Woodworth, 1990): (a.k.a. Maximum Difference Scaling or MaxDiff)

Give k terms and ask which is most X, and which is least X (*k is usually 4 or 5*)

- preserves the comparative nature
- keeps the number of annotations down to about 2N
- leads to more reliable annotations
 - less biased and more discriminating (Kiritchenko and Mohammad, 2017, Cohen, 2003)

Best-Worst Scaling (BWS)

with example from Kiritchenko et al. 2014

- The annotator is presented with four words (say, A, B, C, and D) and asked:
 - which word is the most positive (least negative)
 - which is the least positive (most negative)

• By answering just these two questions, five out of the six inequalities are known

• For e.g.:

- If A is most positive
- and D is least positive, then we know:

A > B, A > C, A > D, B > D, C > D

Our Example BWS Annotation Instance:

for tweet emotion intensity

ational Research

Council Canada

WAIKATO

Speaker 1: These days I see no light. Nothing is working out #depressed Speaker 2: The refugees are the ones running from terror. Speaker 3: Tim is sad that the business is not going to meet expectations. Speaker 4: Too many people cannot make ends meet with their wages.

Q1. Which of the four speakers is likely to be the MOST SAD

Q2. Which of the four speakers is likely to be the LEAST SAD

Best–Worst Scaling

- Multiple sets of 2N 4-tuples generated randomly
 - that set chosen which maximizes tuple diversity
 - each item is seen in ~8 different 4-tuples
 - no pair of items occurs in more than one 4-tuple
- Each of the 4-tuples presented to 3 annotators
- A real-valued score for all the terms is determined from the BWS annotations (0rme, 2009)

score(t) = % best(t) - % worst(t)

the scores linearly transformed to the 0 to 1 range:

- 0 (lowest emotion intensity)
- to 1 (highest emotion intensity)
- the scores can then be used to rank the tweets

Tweet Emotion Intensity (TEI) Dataset

- ~7K tweets: 1500 to 2200 tweets per emotion
 - anger, fear, joy, sadness
- For machine learning experiments
 - about 50% of the tweets in the training set
 - about 5% in the development set
 - about 45% in the test set

Interactive Visualization: Tweet Emotion Intensity Dataset

http://saifmohammad.com/WebPages/TweetEmotionIntensity-dataviz.html

% by Emo	tion	% by emo	otion, train-o	dev-test	Intensity Histogram
Emotion		Emotion	Testflag		Score (bin)
anger	23.97%	anger	train	50.38%	600
fear	31.73%		dev	4.94%	
joy	22.70%		test	44.68%	
sadness	21.60%		Total	100.00%	²⁷ 400
Grand Total	100.00%	fear	train	50.93%	2 400 - 0
			dev	4.88%	
			test	44.18%	e e e e e e e e e e e e e e e e e e e
			Total	100.00%	
		јоу	train	51.09%	
			dev	4.59%	
% by train	-dev-test		test	44.32%	
Testflag			Total	100.00%	
train	50.91%	sadness	train	51.27%	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000
dev	4.82%		dev	4.83%	
test	44.27%		test	43.90%	Score Filter
Grand Total	100.00%		Total	100.00%	0.00 1.00

Tweets

ld	Tweet	Emotion	Score	
10000	How the fu*k! Who the heck! moved my fridge! should I knock the landlord door. #angry #mad ##	anger	0.94	
10001	So my Indian Uber driver just called someone the N word. If I wasn't in a moving vehicle I'd have jumped out #disgusted	anger	0.90	
10002	@DPD_UK I asked for my parcel to be delivered to a pick up store not my address #fuming #poorcustomerservice	anger	0.90	
10003	so ef whichever butt wipe pulled the fire alarm in davis bc I was sound asleep #pissed #angry #upset #tired #sad #tired #h	anger	0.90	
10004	Don't join @BTCare they put the phone down on you, talk over you and are rude. Taking money out of my acc willynilly! #f	anger	0.90	

Measuring Quality of Annotations

- Less useful: standard inter-annotator agreement measures
 - when a tuple has two items that are close in emotion intensity
 - the disagreement is a useful signal for BWS
- More useful: a measure of reproducibility of the end result
 - repeat annotations
 - involve multiple respondents
 - if similar intensity rankings (and scores) are produced
 - one can be confident that the scores capture the true emotion intensities.

Reliability (Reproducibility) of Annotations

Average split-half reliability (SHR): a commonly used approach to determine consistency (Kuder and Richardson, 1937; Cronbach, 1946)

Average SHR for the TEI Dataset

Emotion	Spearman p	Pearson r
anger	0.779	0.797
fear	0.845	0.850
јоу	0.881	0.882
sadness	0.847	0.847

For fear, joy, and sadness datasets:

- r between 0.84 and 0.88, indicating a high degree of reliability
- the correlations are slightly lower for anger

Impact of Emotion Word Hashtags on Emotion Intensity

This mindless support of a demagogue needs to stop. #racism #grrr #angry

	No. of HQT-NQT	%]	weets l	Pairs	Average	Emotion Inten	sity Sco	re
Emotion	Tweet Pairs	Drop	Rise	None	HQT tweets	NQT tweets	Drop	Rise
anger	282	76.6	19.9	3.4	0.58	0.48	0.15	0.07
fear	454	86.1	13.9	4.4	0.57	0.43	0.18	0.07
joy	204	71.6	26.5	1.9	0.59	0.50	0.15	0.09
sadness	90	85.6	11,1	3.3	0.65	0.49	0.19	0.05
All	1030	78.6	17.8	3.6	0.58	0.47	0.17	0.08

The impact of removal of emotion word hashtags on the emotion intensities of tweets (NQT-HQT subset of our dataset).

The scatter plot of fear intensity of HQT tweet vs. corresponding NQT tweet. As per space availability, some points are labeled with the rele- vant hashtag.

*

National Research

Council Canada

THE UNIVERSITY OF WAIKATO Te Whare Humange o Human

Impact of Emotion Word Hashtags on Emotion Intensity

- Emotion word hashtags are often *not* redundant with the rest of tweet in terms of emotion intensity
- Often these hashtags increase emotion intensity
- Complex interplay between the text and the hashtag
 - if the rest of the tweet clearly indicates an emotion:
 - small change in the perceived emotion intensity
 - if the rest of the tweet is under-specified in terms of the emotion of the speaker:
 - marked increase in the perceived emotion intensity

AUTOMATICALLY DETERMINING TWEET EMOTION INTENSITY

- benchmark regression system and analysis
- quantifying similarity of emotions

0

AffectiveTweets Package for Weka

https://github.com/felipebravom/AffectiveTweets

- Provides a collection of filters for extracting features for sentiment analysis and other related tasks
- Includes features used in:
 - Kiritchenko et al. (2014): sentiment analysis
 - Mohammad et al. (2017): stance detection

We use AffectiveTweets and Train Weka regression models

• LibLinear SVM regression

Features

- word n-grams (WN): presence or absence of word n-grams from n = 1 to n = 4
- character n-grams (CN): presence or absence of character ngrams from n = 3 to n = 5
- word embeddings (WE): an average of the word embeddings of all the words in a tweet
 - negative sampling skip-gram model implemented in Word2Vec (Mikolov et al., 2013)
 - word vectors are trained from ten million English tweets taken from the Edinburgh Twitter Corpus (Petrović et al., 2010)
 - window size: 5
 - number of dimensions: 400.

Features (continued)

- Affect Lexicons (L):
 - the number of words in the tweet matching each class are counted
 - sum individual scores for each class

	Twitter	Annotation	Scope	Label
AFINN (Nielsen, 2011)	Yes	Manual	Sentiment	Numeric
BingLiu (Hu and Liu, 2004)	No	Manual	Sentiment	Nominal
MPQA (Wilson et al., 2005)	No	Manual	Sentiment	Nominal
NRC Affect Intensity Lexicon (NRC-Aff-Int) (Mohammad, 2017)	Yes	Manual	Emotions	Numeric
NRC Word-Emotion Assn. Lexicon (NRC-EmoLex) (Mohammad and Turney, 2013)	No	Manual	Emotions	Nominal
NRC10 Expanded (NRC10E) (Bravo-Marquez et al., 2016)	Yes	Automatic	Emotions	Numeric
NRC Hashtag Emotion Association Lexicon (NRC-Hash-Emo)	Yes	Automatic	Emotions	Numeric
(Mohammad and Kiritchenko, 2015)				
NRC Hashtag Sentiment Lexicon (NRC-Hash-Sent) (Mohammad et al., 2013)	Yes	Automatic	Sentiment	Numeric
Sentiment140 (Mohammad et al., 2013)	Yes	Automatic	Sentiment	Numeric
SentiWordNet (Esuli and Sebastiani, 2006)	No	Automatic	Sentiment	Numeric
SentiStrength (Thelwall et al., 2012)	Yes	Manual	Sentiment	Numeric

Evaluation

- Pearson correlation coefficient (r)
 - scores produced by the automatic system on the test sets vs. the gold intensity scores
 - -1 (perfectly inversely correlated) to 1 (perfectly correlated)
 - a score of 0 indicates no correlation
- Spearman rank correlations were inline with the results obtained using Pearson

Results: r

National Research

Council Canada

THE UNIVERSITY OF

Ū,

system output vs gold

Individual Lexicons					
AFINN	0.48	0.27	0.40	0.28	0.3
BingLiu	0.33	0.31	0.37	0.23	0.3
MPQA	0.18	0.20	0.28	0.12	0.2
NRC-Aff-Int	0.24	0.28	0.37	0.32	0.3
NRC-EmoLex	0.18	0.26	0.36	0.23	0.2
NRC10E	0.35	0.34	0.43	0.37	0.3
NRC-Hash-Emo	0.55	0.55	0.46	0.54	0.4
NRC-Hash-Sent	0.33	0.24	0.41	0.39	0.3
Sentiment140	0.33	0.41	0.40	0.48	0.4
SentiWordNet	0.14	0.19	0.26	0.16	0.1
SentiStrength	0.43	0.34	0.46	0.61	0.4
Combinations					
WN + CN + WE	0.50	0.48	0.45	0.49	0.4
WN + CN + L	0.61	0.61	0.61	0.63	0.0
WE + L	0.64	0.63	0.65	0.71	0.0
WN + WE + L	0.63	0.65	0.65	0.65	0.0
CN + WE + L	0.61	0.61	0.62	0.63	0.0
WN + CN + WE + L	0.61	0.61	0.61	0.63	0.0
Emotion Intensities in Twee	ts. Saif M. I	Nohammad	and Felipe	e Bravo-Mai	rquez.

fear

0.49

0.48

0.54

0.60

anger

0.42

0.50

0.48

0.62

Individual feature sets

word ngrams (WN)

char. ngrams (CN)

all lexicons (L)

word embeds. (WE)

joy

0.52

0.45

0.57

0.60

sad.

0.49

0.49

0.60

0.68

avg.

0.48

0.48

0.55

0.63

0.36 0.31 0.20 0.30 0.26 0.37 0.53 0.34 0.41 0.19 0.46

0.480.61 0.66 0.65 0.62 0.62

Results: r	
system output vs gold	

- Features from affect lexicons: strongest single feature category
- NRC-Hash-Emo: best single lexicon (Mohammad, 2012; Mohammad and Kiritchenko, 2015)
- WE + L: best overall results

	anger	fear	joy	sad.	avg.
Individual feature sets					
word ngrams (WN)					0.48
char. ngrams (CN)					0.48
word embeds. (WE)					0.55
all lexicons (L)					0.63
Individual Lexicons					
AFINN					0.36
BingLiu					0.31
MPQA					0.20
NRC-Aff-Int					0.30
NRC-EmoLex					0.26
NRC10E					0.37
NRC-Hash-Emo					0.53
NRC-Hash-Sent					0.34
Sentiment140					0.41
SentiWordNet					0.19
SentiStrength					0.46
Combinations					
WN + CN + WE					0.48
WN + CN + L					0.61
WE + L					0.66
WN + WE + L					0.65
CN + WE + L					0.62
WN + CN + WE + L	,				0.62

Results: r system output vs gold

- Features from affect lexicons: strongest single feature category
- NRC-Hash-Emo: best single lexicon (Mohammad, 2012; Mohammad and Kiritchenko, 2015)
- WE + L: best overall results

	anger	fear	joy	sad.	avg.
Individual feature sets					
word ngrams (WN)	0.42	0.49	0.52	0.49	0.48
char. ngrams (CN)	0.50	0.48	0.45	0.49	0.48
word embeds. (WE)	0.48	0.54	0.57	0.60	0.55
all lexicons (L)	0.62	0.60	0.60	0.68	0.63
Individual Lexicons					
AFINN	0.48	0.27	0.40	0.28	0.36
BingLiu	0.33	0.31	0.37	0.23	0.31
MPQA	0.18	0.20	0.28	0.12	0.20
NRC-Aff-Int	0.24	0.28	0.37	0.32	0.30
NRC-EmoLex	0.18	0.26	0.36	0.23	0.26
NRC10E	0.35	0.34	0.43	0.37	0.37
NRC-Hash-Emo	0.55	0.55	0.46	0.54	0.53
NRC-Hash-Sent	0.33	0.24	0.41	0.39	0.34
Sentiment140	0.33	0.41	0.40	0.48	0.41
SentiWordNet	0.14	0.19	0.26	0.16	0.19
SentiStrength	0.43	0.34	0.46	0.61	0.46
Combinations					
WN + CN + WE	0.50	0.48	0.45	0.49	0.48
WN + CN + L	0.61	0.61	0.61	0.63	0.61
WE + L	0.64	0.63	0.65	0.71	0.66
WN + WE + L	0.63	0.65	0.65	0.65	0.65
CN + WE + L	0.61	0.61	0.62	0.63	0.62
WN + CN + WE + L	0.61	0.61	0.61	0.63	0.62

Similarity of Emotions

Are all emotion pairs equally similar/ dissimialr?

Some emotions are closer to each other than others?

- which ones?
- can we quantify this?

Similarity of Emotions: In Language

Hypothesis: Some emotion pairs may have similar manifestions in language

 for example, similar words and expressions are used when expressing/describing both emotions

Experiment: We quantify this similarity of linguistic manifestation by using the Tweet Emotion Intensity dataset and the following experiment

- train regression system
 - with features WN + WE + L
 - on the training data for one emotion
- evaluate predictions on the test data for a different emotion

Correlation Results (r)

	Test On				
Train on	anger	fear	јоу	sadness	
anger	0.63	0.37	-0.37	0.45	
fear	0.46	0.65	-0.39	0.63	
јоу	-0.41	-0.23	0.65	-0.41	
sadness	0.39	0.47	-0.32	0.65	

- The correlations are asymmetric
- All of the emotion pairs are correlated at least to some extent
 - diagonal: using training data for same emotion as test data
 - positive r: negative emotion with negative emotion
 - negative r: positive emotion with negative emotion
 - highest r: learning from fear and predicting sadness scores
 - r = 0.63 is close to the upper-bound (r = 0.65)

WASSA- 2017 Shared Task on Emotion Intensity

- The competition was organized on a CodaLab website: http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html
- Baseline system, AffectiveTweets package, released: https://github.com/felipebravom/AffectiveTweets
- Twenty-two teams participated.
 - Best system: ensemble of deep learning models (r = 0.74)
 - Top 3 teams: feature vector from the AffectiveTweets package

More details in the task-description paper (Mohammad and Bravo-Marquez, 2017)

	Team Name	r avg. (rank)
Poculto	1. Prayas	0.747 (1)
RESUIIS	2. IMŠ	0.722 (2)
	3. SeerNet	0.708 (3)
	4. UWaterloo	0.685 (4)
	5. IITP	0.682 (5)
	6. YZU NLP	0.677 (6)
	7. YNU-HPCC	0.671 (7)
basolino: 0.66	8. TextMining	0.649 (8)
Daseille. 0.00	9. XRCE	0.638 (9)
	10. LIPN	0.619 (10)
	11. DMGroup	0.571 (11)
	12. Code Wizards	0.527 (12)
	13. Todai	0.522 (13)
	14. SGNLP	0.494 (14)
	15. NUIG	0.494 (14)
	16. PLN PUCRS	0.483 (16)
	17. H.Niemtsov	0.468 (17)
	18. Tecnolengua	0.442 (18)
	19. GradAscent	0.426 (19)
	20. SHEF/CNN	0.291 (20)
	21. deepCybErNet	0.076 (21)
	Late submission	
	* SiTAKA	0.631

											<u>'</u>	l'eam										
Features	1	2	3	4	5	6	7	8	9	*	10	11	12	13	14	15	16	17	18	19	20	21
N-grams				\checkmark									\checkmark									
CN													\checkmark									
WN				\checkmark									\checkmark			\checkmark						
Word Embeddings	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark				\checkmark									
Glove			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark		\checkmark				\checkmark		
Emoji Vectors			\checkmark	\checkmark																		
Word2Vec	\checkmark	\checkmark	\checkmark	\checkmark																		
Other								\checkmark					\checkmark		\checkmark							
Sentence Embeddings																						
CNN	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark		\checkmark					\checkmark						\checkmark	\checkmark
LSTM	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark						\checkmark		\checkmark				\checkmark		
Other				\checkmark												\checkmark				\checkmark	\checkmark	
Affective Lexicons		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				\checkmark				\checkmark	\checkmark	\checkmark		
AFINN	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark														
ANEW		\checkmark																				
BingLiu	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark													
Happy Ratings		\checkmark																				
Lingmotif																			\checkmark			
LIWC																	\checkmark					
MPQA	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark														
NRC-Aff-Int	\checkmark		\checkmark	\checkmark				\checkmark														
NRC-EmoLex	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark													
NRC-Emoticon-Lex	\checkmark		\checkmark	\checkmark				\checkmark					\checkmark									
NRC-Hash-Emo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark													
NRC-Hash-Sent		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark														
NRC-Hashtag-Sent.	\checkmark		\checkmark	\checkmark																		
NRC10E	\checkmark	\checkmark	\checkmark					\checkmark														
Sentiment140	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark														
SentiStrength		\checkmark	\checkmark					\checkmark														
SentiWordNet	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark														
Vader					\checkmark																	
Word.Affect			\checkmark																			
In-house lexicon	\checkmark								\checkmark								\checkmark					
Linguistic Features									\checkmark													
Dependency Parser									\checkmark													

Regression System

	Team																					
Regression	1	2	3	4	5	6	7	8	9	*	10	11	12	13	14	15	16	17	18	19	20	21
AdaBoost			\checkmark																			
Gradient Boosting			\checkmark	\checkmark													\checkmark					
Linear Regression				\checkmark																		
Logistic Regression										\checkmark									\checkmark			
Neural Network	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		\checkmark				\checkmark	\checkmark	\checkmark
Random Forest		\checkmark	\checkmark						\checkmark													
SVM or SVR			\checkmark	\checkmark	\checkmark								\checkmark			\checkmark	\checkmark	\checkmark		\checkmark		
Ensemble	\checkmark		\checkmark										\checkmark			\checkmark				\checkmark		

Summary: Created Affect Association Lexicons

- Created the first emotion intensity dataset for tweets
 - used best–worst scaling
 - applied to tweets (not just words) for the first time
- Showed that emotion-word hashtags often impact emotion intensity
 - often conveying a more intense emotion
- Created a benchmark regression system and conducted experiments
 - showed that affect lexicons are useful
 - especially those with fine word–emotion association scores such as the NRC Hashtag Emotion Lexicon
- Showed the extent to which emotion pairs are correlated
 - fear is strongly indicative of sadness

Ongoing Work

- SemEval-2018 Task#1: Affect in Tweets
 - Nine emotion categories
 - Valence, arousal, dominance
 - English, Arabic, Spanish
- Analyzing relationship between the VAD model and the categorical model of emotions
- Analyzing interplay between emotion intensity of words and emotion intensity of sentences/tweets
 - NRC Affect Intensity Lexicon: provides real-valued affect intensity scores for words
 Word Affect Intensities. Saif M. Mohammad. arXiv preprint arXiv:1704.08798, April 2017. http://saifmohammad.com/WebPages/AffectIntensity.htm
- Developing stronger emotion intensity models
- Multimodal emotion analysis

Resources available at shared task website:

http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html

- data
- annotation questionnaires
- evaluation scripts
- interactive visualizations of the data

AffectiveTweets Package

https://github.com/felipebravom/AffectiveTweets

Various affect lexicon available here:

http://saifmohammad.com/WebPages/AffectIntensity.htm

- NRC Hashtag Emotion lexicon
- NRC Affect Intensity Lexicon
- and others

Best-Worst Scaling resources available here:

http://saifmohammad.com/WebPages/BestWorst.html

scripts and various BWS datasets

Contact:

Saif M. Mohammad saif.mohammad@nrc-cnrc.gc.ca www.saifmohammad.com

Felipe Bravo-Marquez

fbravoma@waikato.ac.nz www.cs.waikato.ac.nz/~fbravoma/

